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It is known experimentally that the melting temperature TmðpÞ of Na as a function of pressure p
increases with p out to � 20GPa and then passes through a maximum. Here, we interpret the
behavior as passing from classical Wigner-like bcc nuclear structure at low pressures to a struc-
ture out to about 60GPa where the melting is mediated by topological defects.

Keywords: Melting of Na; Low-p Wigner-like structure; Crossover to dislocation-mediated
melting

It has been recognized for some time that near 30GPa metallic Na can be modeled on

its melting curve as a one-component plasma characterized by its customary parameter

� ’ 180 (equation (1)) at the liquid–solid phase transition. Going back to Brush, Sahlin

and Teller [1] one has a transition of (classical) nuclei in a uniform background of

electrons where Tm is proportional to the cube root of the number density

n. Evidently then, in such a regime, dTm=dp is positive, and the nuclei reside on

a body-centered cubic lattice, as found by computer simulation [1,2]. Such an attractive

picture of freezing of Na is now known to have a quite limited range of validity

as a function of pressure (see figure 1, where experimental results out to �120GPa

are displayed).
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In a little more detail, the so-called one-component plasma (OCP) model is
characterized by a single parameter �, which for a monovalent metal like Na is
defined by

� ¼
e2

rskBT
: ð1Þ

This parameter measures the ratio of Coulomb potential energy (e2=rs), with rs the mean
charge–charge separation, to the thermal energy kBT, with kB denoting Boltzmann’s
constant. What has emerged from further detailed studies of the classical OCP
model, following Brush et al. [1], is that there is a liquid–solid phase transition when
� � 180, at first sight a very surprisingly large ratio of potential to (thermal) kinetic
energy.

The study of the melting curve of Na is also motivated by the unconventional
behavior of the alkalis at high pressure. Early theoretical work [4] predicted that the
alkalis should undergo an electronic instability at high pressure, thus deviating from
their almost ideal metallic behavior. First-principles calculations then demonstrated
a pressure-induced structural instability towards closely packed structures [5]. These
were indeed followed by the observation of low-symmetry structures in Li at pressures
greater than 40GPa [6]. At such high pressures, Li exhibits an anomalous electronic
behavior, with some evidence of a metal-insulator transition in the high-pressure,
high-temperature phase [7], and even superconductivity in the high-pressure,
low-temperature phase [8–10]. Oscillations between the symmetric and low-symmetry
phases are expected for the alkalis as a function of increasing pressure, with a re-entrant
metallic character at higher densities, as a consequence of Friedel oscillations in the pair
potential [11].

We shall adopt below for Na and 30 < p < 120GPa a model of melting which
has a relatively long history, going back at least to proposals by Kuhlmann-
Wilsdorf [12]. Later work by Cotterill [13,14] has a prominent place also in this area.
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Figure 1. Melting curve of Na up to 120GPa. Redrawn after reference [3].
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However, we here appeal directly to the recent discussion of Matthai and March [15].
These authors appeal, as in the above references, to a melting scenario based on topo-
logical defects, and in particular on dislocations. Matthai and March write the melting
temperature Tm as

Tm � �FS ð2Þ

where � is the atomic volume, F is a function of elastic constants, and S is a structure-
dependent factor depending relatively weakly on the local coordination number c of the
lattice under consideration.

For present purposes, we want to contrast the appearance of the atomic volume � in
equation (2) in a linear fashion with the classical Wigner crystal dependence on ��1=3,
which is useful near 30GPa. Of course, one will eventually need to estimate the volume
dependence of F and S in equation (2). As to S, the work of e.g. Burakovsky et al. [16]
gives in S a factor of logðc� 1Þ, so the dependence on c is expected to be pretty
weak. As to F, Kleinert and Jiang [17] give a fairly comprehensive but then inevitably
somewhat complicated phonon theory of how F in equation (2) depends on the elastic
constants. Though involving, of course, additional assumptions beyond those made by
Kleinert and Jiang [17], Burakovsky et al. [16] effectively approximate F by the shear
modulus G.

But we stress that in such a topological defect-mediated melting mechanism, which
we propose as appropriate to the low-symmetry structures, we foresee no difficulty in
understanding a decrease in TmðpÞ as p increases from �30GPa to �120GPa.

In summary, the studies of Gregoryanz et al. [3,18] on TmðpÞ in Na can, we propose,
be understood in terms of a crossover from the melting of a bcc crystalline phase near
30GPa which grossly is a classical OCP transition first predicted by Brush et al. [1] and
in which Tm under compression varies roughly as ��1=3, with � the atomic volume, to a
melting in low symmetry structures in which the mechanism is the one mediated by
topological defects.

As to future directions, it would be of obvious interest in low-symmetry structures to
study the way elastic constants, and especially the shear modulus, vary with pressure in
the regime between say 40GPa and 100GPa, both experimental and theoretical studies
of this kind being, we suggest, highly worthwhile areas.
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